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By signing his name m:p, he is obviously sending a 
secret message that, if elected, he will support us. 
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Advanced Muon Beams: Outline 

 Introduction 

 Dipole + Wedge (and Pion Candelabra) 

 N-Ring CircUS (Circulating-beam Ultimate Source) 

 Summary/Discussion/Recruiting* 

 

*A goal of this talk is to attract talented and enthusiastic 
collaborators 
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Introduction 

 What will Project-X muon beam experimenters need? 
 High intensity  

 High duty factor 

 High purity/low contamination 

 Small emittances 

 Specific time distributions? 

 Polarization? 

 Can those needs be met? And if so, how? 
 In this talk I’ll describe two muon-beam system concepts 

– The Dipole + Wedge Pion Collection Scheme: status 

– The N-Ring CircUS: emergent concepts 
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Introduction (continued) 

 The Project-X CW Linac will be able to deliver: 
 High intensity protons 

 at high duty factor 

 with specified proton time distributions 

 The ideal muon beam design(s) would deliver 
 a high ratio of useful muons to incident protons 

 with high purity/low contamination 

 and small emittances, 

 while preserving, insofar as possible, the time distributions 
of the protons. 

 Polarization capability is necessary for some experiments. 
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Introduction (continued) 

 Specific context (our marching orders): 
 1-GeV protons from CW linac 

 1 Megawatt of beam power 

 Focusing on the beam needs of a m->e conversion experiment 

– Considerable improvement in sensitivity, and/or 

– Ability to use high-Z muon stopping targets 

 Look first at a dipole and wedge system. 

 Thinking outside that box: 
 3-GeV beam in Stage 2 

 Other experiments with other needs 

 Positive and negative pions and muons 

 Multiple muon beams from one target complex 

 Neutrino beams from circulating muon beams 

 Other muon beam system concepts 
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Paper at IPAC12, May, 2012 
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 System consists of dipole+wedge, decay volume, a single-pass 
cooling system, then rf recapture and deceleration., possibly 
followed by a tapered solenoid to the stopping target. 

 

The dipole and wedge concept 
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…
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     Intense Stopping Muon Beams 

Dipole and Wedge 

Into HCC  

Wedge narrows 

P distribution 

Matching into the HCC which 

degrades muons to stop in target 

+ 

      dipole bend 

removes large 

neutral 

backgrounds. 
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pmin and pmax are the 

minimum and 

maximum muon 

momenta vs the parent 

pion momentum. pR 

shows the muon 

momentum that just 

survives passage 

through an absorber 

thick enough to range 

out the parent pions. 

fsurvive shows 1000* 

the fraction of decay 

muons having 

momenta above pR. 

 

pp, MeV/c 
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 Gaussian proton beam with proj. rms sizes of 1 mm 

 A rod-shaped gold target 
 Radius =2.5 mm 

 Length =15.24 cm, (1.5 interaction lengths).  

 The small beam and target radii were motivated by 
previous work of Lebedev, Mokhov, Striganov, et al. 

 The results show fluxes at the target surface. 

 So far, there’s no magnetic field on the target. 

 G4Beamline* was used for these simulations. 

 

Pion Production Simulations 
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*T.Roberts, http://g4beamline.muonsinc.com 

 

http://g4beamline.muonsinc.com/
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The fluxes of π─’s exiting a gold target vs. Cos(θ) and P(MeV/c) for 

protons with kinetic energy 1, 3  5, and 8 GeV. 
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The fluxes of π+’s (upper) and π─’s (lower) exiting a gold target 

vs. Cos(θ) and P(MeV/c) for protons of 1 GeV and 3 GeV.  
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PID Direction KE(p) (GeV) ΔP 

(MeV/c) 

Nparticle 

per Joule 

π─ bkwd 1 50-250 1.167x106 

π─ bkwd 3 50-250 1.949x106 

π─ bkwd 8 50-250 1.683x106 

π+ bkwd 1 50-250 2.75x106 

π+ bkwd 3 50-250 2.117x106 

π+ bkwd 8 50-250 1.606x106 

π+ fwd 1 400-600 1.639x107 

π+ fwd 3 500-700 1.022x107 

π+ fwd 8 500-700 1.176x107 

π─ fwd 1 400-600 2.726x106 

π─ fwd 3 450-650 7.214x106 

π─ fwd 8 500-700 1.016x107 

Pion Production Results 

June 18, 2012  17 Chuck Ankenbrandt, Muons, Inc. 

*This ratio corresponds to Np/Np ~ 0.44E-3 

* 
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Layout of single dipole with two targets and four wedges to produce 
four mono-energetic pion beams from a single proton beam. 
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 There aren’t many very low-momentum pions produced. 
 Mainly just due to phase space dV=p2dp dcosq df 

 So it’s hard to produce a stopping beam directly. 

 Low-energy pions have trouble escaping a thick target. 
 (This was previously pointed out by Mokhov, Lebedev, et al.) 

 The D resonance in pN interactions is important. 

 Ionization dE/dx causes low-E pions to range out. 

 Relatively copious backward production of negative pions 
at low energy (should be vetted by experiment). 

 3 GeV works better than 1 GeV for p- production. 
 In a case of interest, the ratio is 2.65 for the same beam power. 

 Forward production is suitable for the dipole+wedge, but 
the predicted rates are somewhat disappointing at 1 GeV. 

 

 

Comments on simulation results 
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 Mu2e plans to use 8 kW of 8-GeV protons (Iav=1 mA) 
 Nm/Np ~ 2.5E-3 for Mu2e at 8 GeV (last time I looked) 

 For m->e@PX, assume 1 MW of 1-GeV protons (1 mA) 

 So, 1000 times more protons, 125 times more power. 

 However Np/Np*Ep is ~3.7 times larger at 8 GeV 
than at 1 GeV. So net gain is 125/3.7=33 times. 

 1 mA corresponds to 6.2E15 protons/sec. 
 That’s 1.24E23 protons in 2E7 seconds. 

 Np/Np ~ 0.44E-3 for dipole+wedge (before wedge) 
 So Np ~ 5E19 in a year for 1 MW of 1-GeV protons. 

 Np/Np ~ 1.7E-3 for N-Ring CircUS 
 So Np ~ 2E20 in a year 

 These numbers include no inefficiencies, losses, etc. 

 

 

A few words about rates… 
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 And now for something quite different… 

 and quite preliminary. 

The N-Ring Circus 
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 There’s a proton storage ring and N-1 pion/muon 
storage rings. All fixed-energy rings. 

 All rings share a common straight section; there 
are splitter/recombiner dipoles at the ends of 
that straight section. The revolution times of all 
rings are multiples of the fundamental 1/162.5 
MHz bunch spacing of the CW linac. All rings have 
RF to maintain rf bunching and to restore the 
energy lost when the beams pass thru matter. 

 H- ions come in thru a thin low-Z target in which 
they get stripped. A few of the resulting protons 
interact on the first pass; the rest are stored to 
recirculate thru the same target. Eventually ~all 
protons interact. 

The N-Ring CircUS: System Concepts 
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 Further absorbers on the other side of the muon 
rings provide faster cooling. 

 Continuous extraction occurs thru a U-shaped 
electrostatic septum.  Coherent betatron 
oscillations are excited by a transverse-mode 
deflecting rf cavity synchronous with the betatron 
oscillation frequency. 

 It’s a completely “flow-thru” system: no pulsed or 
ramped devices. 

 After extraction, subsequent systems can provide 
further cooling and deceleration if necessary. 

The NRCircUS: System Concepts (cont) 
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 The thin low-Z target minimizes target 
reabsorption, avoids depth-of-focus (hourglass 
effect) problems at low beta, and functionally 
serves three purposes: stripper, production 
target, and cooling medium. 

 Recirculating system allows multiple passes thru 
RF cavities; provides affordable multipass cooling. 

 Continuous extraction allows all emittances of 
extracted beam to be smaller than those of the 
circulating beam. In principle, can reduce the 6-d 
emittances by a factor equal to the average 
number of turns before extraction. 

 Multi-turn circulation before extraction reduces 
pion contamination, producing a pure muon beam. 

The N-Ring CircUS: Main advantages 
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 Say N=5. Then there are 2 positive and two 
negative pion/muon rings, produced forward and 
backward, respectively. All rings operate close to 
transition. FFAG lattices for pion/muon rings. 

 Ring sizes: 
 Size the proton ring to eventually handle 3 GeV. Say R~ 

50 m, Circumference~ 300 m, Trev ~ 1 microsecond.  

 Size Pi/Mu ring circumferences to give Trev of order 3 
pion lifetimes, 3% of a muon lifetime. Most pions decay 
before encountering additional absorber material on the 
other side of the ring that cools the muons. 

 Energy loss per turn ~ 30 MeV. RF ring voltage ~ 
100 MV. 

The N-Ring CircUS: Major parameters 
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 The pion/muon rings should have enormous 
acceptances in transverse emittances and 
momentum spread so that many of the pions and 
resulting muons fall within the acceptances (FFAG?) 

 The acceptances of the proton ring are large enough 
to contain the beam after it passes thru the target 
~ 100 times (~one interaction length). 

 The circumferences of the rings: there are some 
“quantization” conditions to satisfy to keep things 
synchronized.  

The N-Ring CircUS: Requirements 
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Yield of Pi+/sec per Watt 

Au 

1 int len 

Au 

0.01 int len 

LiH 

0.01 int len 
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Yield of Pi-/sec per Watt 

Au 

1 int len 

Au 

0.01 int len 

LiH 

0.01 int len 
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Yield per 5 MPOT on 1 λint of Au = 101.6mm 

Pi+  

Bkwd 300 mrad Pi+  

Fwd 300 mrad 

Pi-  

Fwd 300 mrad 

Pi-  

Bkwd 300 mrad 

425 MeV/c 

400 MeV/c 

140 MeV/c 

140 MeV/c 
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Yield per 100 MPOT on 0.01 λint of Au = 1.016mm 

Pi+  

Bkwd 300 mrad Pi+  

Fwd 300 mrad 

Pi-  

Fwd 300 mrad 

Pi-  

Bkwd 300 mrad 

480 MeV/c 

400 MeV/c??? 

140 MeV/c 

140 MeV/c 
140 MeV/c 
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Yield per 100 MPOT on 0.01 λint of LiH = 7.2811 mm 

Pi+  

Bkwd 300 mrad Pi+  

Fwd 300 mrad 

Pi-  

Fwd 300 mrad 

Pi-  

Bkwd 300 mrad 

470 MeV/c 

450 MeV/c 

140 MeV/c 

140 MeV/c 
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PID Dir KE(p) (GeV) ΔP 

(MeV/c) 

Nparticle 

per Watt 

π─ bkwd 1 50-250 1.167x106 

π─ bkwd 3 50-250 1.949x106 

π─ bkwd 8 50-250 1.683x106 

π+ bkwd 1 50-250 2.75x106 

π+ bkwd 3 50-250 2.117x106 

π+ bkwd 8 50-250 1.606x106 

π+ fwd 1 400-600 1.639x107 

π+ fwd 3 500-700 1.022x107 

π+ fwd 8 500-700 1.176x107 

π─ fwd 1 400-600 2.726x106 

π─ fwd 3 450-650 7.214x106 

π─ fwd 8 500-700 1.016x107 

Yields from IPAC12 

(multiple beam energies) 
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PID Dir Target 

Material 

Ltarget 

(λint) 

ΔP 

(MeV/c) 

Nparticle/sec 

per Watt 

Nparticle/POT 

π─ fwd Au 1.5 400-600 2.726x106 4.368x10-4 

π─ fwd Au 1.0 300-500 1.946x106 3.118x10-4 

π─ fwd Au 0.01 40-240 6.416x104 1.028x10-5 

π─ fwd Au 0.01 300-500 5.299x104 8.490x10-6 

π─ fwd LiH 0.01 350-550 1.087x105 1.742x10-5 

π+ fwd Au 1.5 400-600 1.639x107 2.626x10-3 

π+ fwd Au 1.0 325-525 1.946x106 3.118x10-4 

π+ fwd Au 0.01 380-580 2.928x105 4.691x10-5 

π+ fwd LiH 0.01 370-570 1.201x106 1.924x10-4 

π─ bkwd Au 1.5 50-250 1.167x106 1.870x10-4 

π─ bkwd Au 1.0 40-240 8.726x105 1.398x10-4 

π─ bkwd Au 0.01 40-240 4.213x104 6.750x10-6 

π─ bkwd LiH 0.01 40-240 1.434x105 2.298x10-5 

π+ bkwd Au 1.5 50-250 2.750x106 4.406x10-4 

π+ bkwd Au 1.0 40-240 2.026x106 3.246x10-4 

π+ bkwd Au 0.01 40-240 8.819x104 1.413x10-5 

π+ bkwd LiH 0.01 40-240 7.223x105 1.157x10-4 

Yields from 1 GeV Proton Beam 
(first in each group is from the 1 GeV case in the IPAC12 table) 
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Summary 

 Two promising system concepts have been presented. 

 If it works, the N-Ring CircUS has the potential to 
deliver what the greediest experimenters want: high flux 
together with excellent beam quality. 

 Both the Dipole + Wedge and the N-Ring CircUS lead 
naturally to multiple beams from a single target station. 

 The Np/Ep*Np ratios for both systems are comparable to 
the Nm/Ep*Np of Mu2e. The N-Ring CircUS is ~ 4 times 
better in that regard. 

 3 GeV is significantly better than 1 GeV for negative pion 
production. 

 It’s early. There’s lots of work to do. Join us! 

 

 


